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ABSTRACT

This investigation examines the ability of an elastic T-stress analysis coupled with a mudi.
fled boundary layer (MBL) solution to predict stresses ahead of a cra-k tip in a variety of
planar geometries. The approximate stresses are used as input to estimate the effective
driving force for cleavage fracture (Jo) using the micromechanically based approached
introduced by Dodds and Anderson. Finite element analyses for a wide variety of planar
cracked geometries are conducted which have elastic biaxiality parameters (0) ranging
from -0.99 (very low constraint) to +2.96 (very high constraint). The magnitude and sign
of fl indicate the rate at which crack-tip constraint changes with increasing applied load.
All results pertain to a Lioderately strain hardening hardening material (strain hardening
exponent(n) of 10). These analyses suggest thatfi is an effective indicator of both the accura.
cy of T-MBL estimates of Jo and of applicability limits on evolving fracture analysis meth-
odologies (i.e. T-MBL, J-Q, and J/Jo). Specifically, when Ifi 1 >0.4 these analyses show that
the T-MBL approximation of J. is accurate to within 20% of a detailed finite-element anal-
ysis. As "structural type" configurations, i.e. shallow cracks in tension, generally have
lfi 1 >0.4, it appears that only an elastic analysis may be needed to determine reasonably
accurate J. values for structural conditions.

Keywords: Elastic-plastic fracture mechanics, size effects, finite element analysis, modi-
fied boundary layer, T-stress, Jssy, J0 , Q, structural integrity assessment.
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Approximate Techniques for Predicting Size
Effects on Cleavage Fracture Toughness (Jc)

1. INTRODUCTION

Numerous experimental studies report an increase of the cleavage fracture toughness, Jc, for
steels (e.g. A36, A515, HY-80, A533B) as the crack depth is reduced in SE(B) specimens [So-
rem, et al., 1991; Kirk, et al., 1991; Sumpter and Forbes, 1992; Theiss and Bryson, 19911.
Cleavage fracture toughness also increases with the transition from bending to tensile load
[Keeney-Walker, et al., 1992]. These increases of J, develop when the in-plane plastic flow
produced by gross deformation of the specimen impinges on the local crack-tip fields. This re-
laxes the kinematic constraint against further plastic flow. Once the global and local plastic
fields interact, the crack-tip stresses and strains no longer increase in proportion to one anoth-
er with amplitude governed by J alone. At these high deformation levels, equivalence of J (or
CTOD) between different cracked geometries does not insure identical crack-tip stress anti
strain fields. Because the micro-mechanisms of fracture require attainment of critical condi-
tions described in terms of stress and/or strain, different values of applied J may be required
to cause fracture in different structures. These interrelated effects of geometry and loading
mode on near-tip stresses, near-tip strains, and fracture toughness are referred to collectively
as "size effects." The routinely observed size effects on J, are actually a size effect on the rela-
tion between macroscopic fracture parameters (e.g. J) and micro-scale crack driving force (e.g.
opening mode stress). These size effects can be quantified for cleavage fracture by coupling a
description of the stress field surrounding the crack tip with appropriate micromechanical fail-
ure models. The following sections discuss recent developments in these areas.

1.1 Crack-Tip Stress Fields

Small scale yielding (SSY) conditions exist when the crack-tip plastic zone is infinitesimally
small compared to all other characteristic lengths and is embedded within a linear-elastic
field. Elastic-plastic crack-tip fields in SSY are generated by applying displacements consis-
tent with the first two terms of the linear elastic crack-tip fields to a circular region containing
an edge crack (Figure 1):

u(r,O) K l - cos( 2 )(3 - 4v - cosE) + T V2-rcosO

v(rO) K I v• sin(2)(3 - 4v - cosO) - Tv(1 + V)in (1)
I K_2;r 21 E

K1 and Tare the leading coefficients of an asymptotic expansion for stresses surrounding the
crack tip in a two dimensional linear-elastic body:

K,

S= -& fo(0) + o(j;)

,'2.nr



Ay
SK4 /and TDisplacemen,

"-~ Field Imposed on
Boundary

6

Figure 1: Small scale yield (SSY) model.

Here r is the radial distance from the crack tip, K1 is the stress intensity factor, and T is the
stress parallel to the Lrack over vanishingly small r. All remaining terms are defined in
Figure 1. The truncated terms in eqn. (2) are of order ,7r or higher and consequently approach
zero as r-*0. Thus, K and T alone control the stress state in the near vicinity of the crack tip

under SSY conditions.

Rice and Tracy (19681 and McMeeking [1977] originally proposed the model depicted in
Figure 1, with T=O, as a boundary layer solution of the infinite body, single-ended crack prob-
lem. For this special case, the single parameter J both sets the size scale over which large de-
formations develop and describes the magnitude of stresses near the crack tip but outside of

the finite deformation zone. The HRR field equations quantify the relation between J and
crack-tip stresses and strains in an infinite body made of incompressible, fully plastic power-
law hardening material [Hutchinson, 1968; Rice and Rosengren, 19681.

Larsson and Carlsson [1973] modified the boundary layer (MBL) solution by applying
non-zero T stresses to approximate the effects of finite size on crack-tip region deformation
and plastic flow. The T=O (infinite body) solution is one of a family of SSY solutions generated
by changing the magnitude of the T-stress applied to the MBL model. Larsson and Carlsson
found a marked influence of the the sign and magnitude of the T-stress on the size and shape

of the crack-tip plastic zone. More recent investigations by both Hancock and Parks (and co-
workers) [AI-Ani and Hancock, 1991; Bertegon and Hancock, 1991; Sumpter and Hancock,
1991; Parks, 1991; Du and Hancock, 1991; Wang, 1991(a); Wang, 1991(b)] demonstrate a
strong influence of T-stress on opening mode stresses near the crack tip. Positive T stresses

slightly elevate the opening mode stresses relative to the T=O condition while negative T-
stresses reduce significantly the opening mode stress. Despite this influence on near-tip
stresses, the T-stress has no effect on J because T is non-singular. These findings demon-
strate the inadequacy ofJas the sole descriptor of deformation near a crack tip in finite geome-
tries, which generally have non-zero T.

2



O'Dowd and Shih 11991, 19921 propose a two-parameter theory which describes crack-tip
fields in finite geometries (Tx 0). They describe stresses surrounding a crack tip in terms of
J plus an additional parameter Q:

= J i ) U(O;n) + Q r (0 rn) (3)

Here, J sets the size scale over which large deformations develop while Q quantifies the open-
ing stress magnitude. O'Dowd and Shih found by analysis of the MBL model that (1) the power
on the radial coefficient in the second term (q) is approximately zero for n _ 4, (2) for 101 _< 900
the second-orde' normal stresses (ar, and c(oo) are approximately equal, and (3) the second-or-
der shear stress a is approximately zero. Thus, Q is the amplitude of a hydrostatic, or tri-
axiality term. Based on these observations, eqn. (3) simplifies to:

• y I ar (0;n) + Q6 for 101 : 90" (4f

Equation (4) expresses normal stresses in finite bodies as the infinite body HRR solution
[Hutchinson, 1968; Rice and Rosengren, 19681 plus an additive constant (Q) which is indepen-
dent of radial distance from the crack tip. Numerical studies reveal thai this model is adequate
for deformation up to some geometry dependent limit, beyond which Q becomes radially dt-
pendent. Dependence of Q on distance from the crack tip introduces ambiguity into the selec-
tion of a Q value to parameterize constraint effects on fracture toughness. Selection of an arbi-
trary location at which to calculate Q implies knowledge of the critical distance for cleavage
fracture which a pure mechanics approach, such as the J-Q theory, seeks to avoid. However,
use of an alternative infinite body reference solution improves the radial independence of Q
and, thereby, the robustness of the J-Q theory. Figure 2 shows that Q values referenced to a
full-field infinite body solution (i.e. SSYT=O) remain radially independent to much larger de-
formations than those referenced to an infinite body solution which includes only the singular
term (i.e. HRR). Equation (4) is altered to reflect this change of reference solution:

aU t I( SSY;T -o + QCrA6 (5)

Under SSY conditions, T relates uniquely to Q. Analysis of cracks in finite bodies [O'Dowd
and Shih, 1992] reveals that eqn. (5) accurately describes the departure of stresses near the
crack tip from the SSYfamily of solutions well into large scale yielding (LSY). Thus, Q remains
a descriptor of crack-tip stresses at deformation levels beyond those for which T can be de-
fined. However, Figure 2 demonstrates that the crack-tip fields in finite bodies lose self-simi-
laxity with the SSY T=O reference solution at high load levels. Once self-similarity with the
infinite body reference solution is lost, the conditions for fracture in a finite body depend on
characteristics unique to that body. These conditions cannot be parameterized currently with-
in the context of any two-parameter theory.
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Figure 2: Effect of infinite body reference solution on radial independence of Q for an a /'W=0. 15

SE(B) specimen having a Ramberg-Osgood strain hardening exponent (n) of 10.

1.2 T and Q as Constraint Parameters

The linkage of T (in SSY) and of Q (in SSY and LSY) with crack-tip stress state in otivates the
use of Q and T to parameterize constraint effects on fracture toughness data. Several investi-
gators have generated fracture toughness loci [Sumpter and Hancock, 1991; Kirk, et al., 1991;
Sumpter and Forbes, 19921, J-it vs. Q or Jcri vs. T, as depicted schematically in Figure 3.
However, this approach greatly complicates the determination of fracture toughness; it neces-
sitates conducting difficult experiments with low constraint geometries (e.g. shallow cracks
in bending, cracks in tension) to fully define the fracture toughness locus.

Considerable debate surrounds the application of T as a constraint parameter under LSY
conditions rather than Q. The T approach has the ad rantage of simplicity relative to Q, requir-
ing only a linear-elastic analysis rather than an elestic-plastic analysis of the cracked struc-
ture. Under moderate to large scale yielding, the relations between T and the opening mode
stresses become geometry dependent. At these deformation levels, opening mode stresses pre-
dicted by T only approximate the full elastic-plastic solutic,' quantified by Q. However, sever-
al numerical studies show that the T-MBL approximation predicts stresses to w-ithin 10% of
finite body calculations even for very large deformations.

1.3 Micromechanical Models for Cleavage Fracture

Dodds and Anderson [Dodds, et al., 1991; Anderson and Dodds, 1991, Kirk and Dodds, 19921
combine the computat: n of stresses near the crack tip with the micromechanical conditions
for cleavage fracture (achievement of a critical stress over a critical volume [Ritchie, et al.,
19731) topredict the conditions for cleavage fracture in one geometry based on toughness data

4
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i- • QorT

Constraint Decreasing - -
Figure 3: Schematic illustration of fracture toughness locus constructed in mid-transition

using various planar specimen geometries to obtain Jj,4 over a range of constraint
conditions.

from another. Experimental data for several steels including mild steel, A36, and A515 in low
to mid transition demonstrate the validity of this approach [Sorem, et al., 1991; Kirk, et al.,
1991; Sumpter and Forbes, 1992]. For stress controlled cleavage fracture, this micromechani-
cal approach greatly reduces the experimentation needed to define the toughness locus; a con-
siderable simplification over parameterizing constraint effects by either Q or T. The microme-
chanical approach requires detailed resolution of crack-tip fields which, until now, have been
obtained by very detailed elastic-plastic finite element analysis. The determination of Q re-
quires computations of equivalent detail. This complication makes such approaches unattrac-
tive for routine application to structural fracture safety analysis at this time. In this investiga-
tion, the possibility of using the elastic T-stress approximations of crack-tip stress distribu-
tions as input to the micromechanics analysis is investigated to determine if predictions of size
effects having engineering accuracy can be obtained without a detailed elastic-plastic analy-
sis of each configuration considered.
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2. T-MBL APPROXIMATION
Two analyses are needed to couple remotely applied load to opening mode stresses near the
crack tip:

1. An elastic analysis of the cracked structure that relates applied load to T-stress.
2. An elastic-plastic analysis of the MBL model that relates T-stress to opening

mode stresses near the crack tip.
The synthesis of these two analyses to approximate opening mode stresses in finite bodies is
referred to as the T-MBL approximation.

2.1 The Elastic T-Stress

The T-stress (eqn. (2)) is the non-singular elastic stress acting parallel to the crack over van-
ishingly small r. T-stress values for various geometries are frequently reported in the litera-
ture, usually as a non-dimensional ratio with K:

ZiE (6)
K

where P is referred to as a biaxiality parameter which is a constant for a given geometry and
loading mode. The various techniques used to compute T, and therebyfl, include boundary col-
location, second order weight functions, and domain interaction integrals [ Leevers and Radon,
1982; Kfouri, 1986; Sham, 1991; Nakamura and Parks, 19921.

2.2 Modified Boundary Layer Model

Details of the MBL model were presented in Section 1.1. Displacements are applied to the
MBL model consistent with the first two terms (i.e. K and T) of the linear solution. Elastic-
plastic finite element analysis of the model provides a family of full field SSY solutions para-
metric in T/a.. Conditions are achieved wherein stresses and strains at all angles scale with
r1(J/(cr~A)), as do the HRR fields. The fields remain self-similar until the plastic zone size
becomes a significant portion of the modelled domain radius, - 10%, at which point it senses
the finite boundary. Figure 4 schematically depicts the results of such an analysis. The C, coef-
ficients are determined by curve fitting the finite element results at various normalized dis-
tances ahead of the crack tip.

2.3 Approximation of Opening Mode Stresses

The effect of finite size on opening mode stress near the crack tip is computed by combining
the information discussed in the preceding sections. First, an elastic analysis of the cracked
geometry is performed to determine K, T, and #. The variation of T with load is determined
from eqn. (6) as follows:

T = 
(K

0` ao0 =na (7)

These elastic T-stress andKvalues are inserted into the MBL solution (Figure ,) to determine
the variation of opening mode stress near the crack tip with applied loading:

6
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Equation (8) couples the far-field elastic solution with near-tip stresses. The applied load en-
ters this approximation through K while fl characterizes geometry. Moreover, fl controls the
direction and rate at which increasing load causes deviation of near-tip stresses from the T=O
limit. Three examples indicate potential limitations on the applicability of this approximation.

1. 8>0 (high constraint): Equation (8) predicts a continuous increase of normalized
opening mode stress with increasing load. This can lead to unrealistic predic-
tions - consider the rectangular double cantilever beam specimen (a/ W=0.5,
H/W=2.5, 0=2.96 [Leevers and Radon, 19821). At some load the arms of this
specimen must form plastic hinges which reduce opening mode stress signifi-
cantly below the T-MBL prediction.

2. 4=0 (Tm 0): Equation (8) predicts that normalized opening mode stresses remain
constant independent of the applied load, i.e. the constraint remains constant
at the T=0 level. Consider a SE(B) with a-/ W=0.39 which has fl=0 [Leevers and
Radon, 19823. A plastic hinge must form at some load. After hinge formation,
plastic flow is no longer contained and opening mode stresses must fall as a con-
sequence.

3. 4<0 (low constraint): Equation (8) predicts the continuous decrease of normal-
ized opening mode stress with increasing load. This behavior is observed in anal-
yses of finite bodies. Two-dimensional cracked geometries having f<0 include
tension loaded central cracks, tension loaded edge cracks (a/ W<0.60), edge
cracks loaded in bending (a / W<0. 39), and double edge cracks. This class of prob-
lems also includes the particularly important case of semi-elliptical surface
cracks loaded in tension.

Cayy @r

T=O
S T<C

r/(J/ao) T i

Finite Element Results Ci

ST/U00
Figure 4: Relationship between opening mode stress and elastic T-stress quantified by a nodi.

fled boundary layer model. Similar curves can be constructed at any constant normal-
ized distance, %, ahead of the crack tip from finite element results.
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3. MICROMECHANICS PREDICTIONS OF SIZE EFFECTS ON Je

For steels operating at temperatures where cleavage occurs after significant plastic deforma-
tion but before the initiation of ductile growth (lower to mid-transition), attainment of a criti-
cal stress over a microstructurally relevant volume is an appropriate micro-mechanical fail.
ure criteria [Ritchie, et al., 1973]. Important classes of engineering structures can fail by this
mechanism, including high strength rails, offshore oil platforms, ships, pipelines storage
tanks, and nuclear pressure vessels after years of neutron irradiation embrittlement. Dodds
and Anderson [Dodds, et al., 1991; Anderson and Dodds, 1991, Kirk and Dodds, 19921 show
that, by quantifying the effects of finite size on micro-scale / macro-scale crack driving force
relations, the apparent effect of size on fracture toughness can be rigorously predicted without
resort to empirical arguments. These size effects become steadily more pronounced as load in-
creases due to the deviation of crack-tip region deformations from the SSY (T=O) conditions
essential for SPFM to apply. Once SPFM becomes invalid, a micro-mechanics failure criteria
is required to establish the geometry invariant conditions at fracture. Finite element analysis
provides a means to quantify the geometry dependent relations between these conditions and
macro-scale crack driving force. This permits (in principle) prediction of fracture in any body
from toughness values measured using standard specimens.

Although cleavage is driven by stress and stressed volume, the difficulty of measuring crit-
ical values of these parameters dictates that fracture driving force, and thereby critical frac-
ture conditions, be expressed in terms of more easily measured macroscopic parameters (e.g.
J). Thus, an effective macroscopic driving force for cleavage fracture (J,) can be defined as fol-
lows:

Jo is the J to which the infinite body (T=O, MBL model) must be loaded to achieve the same
stressed volume, and thereby the same driving force for cleavage fracture, as in a finite body.

Early papers on this topic employed the notation JsSy instead of Jo. The notation is changed
here to emphasize that the infinite body reference configuration is T=O.

The variation ofJo with J is depicted schematically for two finite bodies in Figure 5. Upon
initial loading of a finite body, crack-tip plasticity is well contained within a surrounding elas-
tic field. Crack-tip conditions are well approximated by T=O and, up to some geometry depen-
dent deformation level, J. - Jz.nte Body. Subsequent interaction of plasticity at the crack tip
with plasticity resulting from overall deformation of the structure relaxes the kinematic
constraint against plastic flow at the crack tip, thus reducing the stresses in the crack-tip re-
gion below what they are for T=O at the same J. This reduces the micro-scale driving force
for cleavage. Consequently, the finite body requires more applied-J to achieve the same condi-
tions for cleavage (same stressed volume) as in the infinite body. This finite size effect on
crack-tip stress fields differs for different geometries constructed from the same material; it
is indicated by deviation from the 1:1 slope in Figure 5. Information of this type is useful for
both analysis of fracture test data and for assessing the defect integrity of structures. Path
A-B-C on Figure 5 illustrates the procedure to remove geometric dependencies from exper-
imental cleavage fracture toughness (Jc) data by determining the geometry independent
cleavage fracture toughness (Ja) corresponding to a measuredJ, value. Alternatively, Figure 5
permits determination of the effective driving force for cleavage fracture produced by structur-
al loading to a certain JApplied value (path E-D-C).

8
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J E JBody

Figure 5: Conceptual variation of J. with J for two finite bodies. Horizontal lines (J0=constant)
denote equivalent driving force for cleavage fracture (equivalent stressed volumes) in
both bodies.

Jo is estimated from opening mode stresses acting on the plane directly ahead of the crack
tip [Dodds, et al., 19911. The variation of these stresses with distance from the crack tip is illus-
trated schematically in Figure 6. Here, finite body stresses are normalized by the stress that
occurs in the T=O, MBL solution at the same normalized distance ahead of the crack tip (same
r/(J/(aciz0 ))) when loaded to the same J as the finite body, i.e. J. =J. Previous studies show
that finite body stresses remain self-similar to the T=0 MBL solution, as indicated by the ra-
dial independence of the normalized stresses in Figure 6, to deformation levels greatly exceed-
ing those at which SPFM breaks down [Dodds, et al., 1991). J. is calculated for each line on
this graph as the Jvalue required in the T=O MBL solution to achieve the same opening mode
stress as in the finite body. In practice, equivalence of stresses is forced at a single location
ahead of the crack tip. This corresponds to selecting the critical microstructural distance (lo)
in the Richie-Knott-Rice model [Ritchie, et al., 1973]. However, self-similarity between the
SSYand finite body stress distributions makes the specific location selected unimportant over
"a wide range of deformation. J0 values are independent of the critical distance selected over
"a range of distances that encompasses fractographically determined 1o values [Herrens and
Read, 1988; Miglin, et al., 1990]. This ability to determine J. irrespective of the actual lo value
relies on self-similar stress distributions around the crack in finite and infinite bodies.

Previous investigations [Dodds, et aL, 1991; Anderson and Dodds, 1991, Kirk and Dodds,
19921 employed very detailed elastic-plastic finite element analysis to quantify the effects of
finite geometry and load level on opening mode stresses. The cost and time required to imple-
ment this approach make it unattractive for routine application. Conversely, opening mode
stresses determined by the T-MBL approximation require only an elastic analysis of the
cracked structure. However, this approximation is not exact for LSY Previous investigators
report differences of -10% between the T-MBL approximation and opening mode stresses
from full finite body calculations. These small errors are misleading due to the considerable

9



influence they exert on J,. The effect of stress errors on J0 is quantified by assuming that the
stress distribution ahead of the crack tip in a finite body is self-similar to that characteristic
of T=O over some range of loading, an assumption justified by reference [Dodds, et al., 19911.
Kirk and Dodds [1992) report T=O solutions for a wide range of strain hardening coefficients,
some of which are reproduced in Figure 7. The effect of errors in the opening mode stress at
cleavage fracture on J,, can be calculated from these results using the following equation:

;0o, n1

J T-. L - (9)J.
rT-MBL((- ) n)

where
r r/(J/(aoeoa))

19; cleavage fracture stress
percentage by which opening mode stress estimated by eqn. (8)
and actual opening mode stress differ

Figure 8 shows that small errors in the estimated opening mode stress have proportionately
greater effects on Jo, particularly for materials that do not strain harden appreciably. This ex-
ample demonstrates that the seemingly small stress errors typically attributed to T-VBL
approximations produce unacceptably large variations in J,. As toughness, not stress, is the
quantity used when assessing structural fracture integrity, the ability of the T-MBL approxi-
mation to correctly predict the effect of constraint on the effective driving force for cleavage
fracture (J0 ) is quantified in this study.

1.0 ---- -

- - - - ----

- - - - - - - - -

Llyy I Finite Body ---------

Gry I T-

Increasing
Deformation / Load

"r/[J/(Co6 oa)]
Figure 6: Effect of applied load on opening mode stresses ahead of a crack in a finite body, after

[Kirk and Dodds, 19921.
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Figure 7: Opening mode stresses on the crack plane in SSY for Ramberg-Osgood materials
[Kirk and Dodds, 19921.

2.0 7

n=50 n=18 n=1O n=5 5

1.5

dOIT-MBL
Jo --- 11

1.0
- 0.9

=f 3

0.5
0.95 1.00 1.05 1.10 1.15 1.20

y- MBL/ Gw

Figure 8: Effect of stress errors in estimated opening mode stress on predicted toughness values.
These results depend on at*, however the relative effect of strain hardening (n) is inde-
pendent of of*.
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4. NUMERICAL PROCEDURES

Two-dimensional, plane-strain finite element analyses of the MBL model and of numerous

finite cracked geometries are performed to obtain detailed resolution of stresses in the crack-

tip region and to determine how they change with loading. Table 1 lists the planar geometries
studied along with theirfi values, which range from -0.99 (very low constraint) to +2.96 (very

high constraint). These analyses permit assessment of the range of conditions over which the
T-MBL approximation provides J. estimates of acceptable accuracy. Conventional small

strain theory is employed throughout. These analyses are conducted using the POLO-FI-

NITE analysis software [Dodds and Lopez, 19851 on an engineering workstation.

4.1 Constitutive Model

Uniaxial stress-strain behavior is described using a linear / power law model (see Figure 9)
proposed by Wang [1991(a), 1991(b)]:

E£ a . for - < L ,
Linear Region: foro

_L e• r2 v, o ,: < L2 (10)

Transition Region: Efor L 7 - L 2  (

Power-Law Region: F for M > L

where ao is the reference stress (0.2% offset yield), e, = ao/E is the reference strain, and n is
the strain hardening coefficient for the power-law region. The remaining parameters are de-

fined in Figure 9. Values representing a moderately strain hardening material are used: n =
10, a. = 60 ksi, E = 30000 ksi, e. = 0.002, andL1 = 0.95. This constitutive model is adopted rather

than the conventional Ramberg-Osgood description to ensure that SSY conditions are main-
tained in the MBL model even for applied T-stresses near the yield stress. A transition region
consisting of a circular arc between the linear and power-law regions makes the tangent mo-
dulus a smooth, continuous function of equivalent strain.

J 2 deformation plasticity theory (i.e. nonlinear elasticity) describes the multi-axial mate-
rial behavior. By using an effective stress defined from the von Mises yield function and an
effective strain defined from the Prandlt-Reuss relations, the total stress components are ex-
pressed in terms of total strain components:

-i I IsA 6 +(11)ei
O'oo 3Q1 - 2v) Co IJ +3 eE/,o Co (

where t• is the trace of the stress tensor, 6 ,i is the Kronecker delta, and the effective stress

and strain are defined by
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a2= 1(i-a 2 ) -(a2 + O.)2 + (ao33  7 11)2'-6a 2 02 * 1) (12.

(=11 - e 22 )2 + (- 22 - E)2 + (E33 - 1 1 )2 + 2(y 2 9+ Y2 +Y2) (13"

Table 1: fi values for Planar cracked geometries modelled.
a/W HIW Loaded .H La

by a /W HI/W Loaded

by
0.05 -0.415 0.25 0.40 +1.578

0.15 -0.296 DB(T) 0.50 0.40 Tractions +2ý956
0.25 -0.178 0.50 1.00 +0.899

SE(B) 0.391 N/A Tractions -0.006 0.025 2.50 Displ. -0.460

0.50 +0.137 0.20 5.00 Displ. -0.415

0.70 +0.410 SE(T) 0.391 2.25 Tractions -0.283

0.90 +1.180 0.50 2.25 Tractions -0.148

DE(T) 0.70 2.25 Trct -0.423 0.70 2.25 Tractions +0.218
0.90 2.25 -0.273 0.025 2.50 -0.994-....-. M(T) Dsl

fcalculation by collocation 0.20 5.00 D0.975

4.2 Finite Elements and Crack-Tip Modelling

Eight noded, plane-strain isoparametric quadrilateral elements are used throughout. Re-
duced (2 x 2) Gaussian integration eliminates locking of the elements under incompressible
plastic deformation. The crack-tip elements are collapsed into wedges with the initially coinci-
dent nodes left unconstrained to permit development of crack-tip blunting deformations. The
side nodes of these elements are retained at the mid-point position. This modelling technique
produces a 1 Ir strain singularity, appropriate in the limit of perfect plasticity.

4.3 Modified Boundary Layer (MBL) Model

A circular domain of outer radius R that contains a sharp crack tip at r=0 is modelled using
finite elements (see Figure 1). Symmetrical boundary conditions are enforced on the crack
plane. The mesh contains 3109 nodes and 986 elements divided into seventeen equally sized
wedges of elements in the 0 direction. Each wedge contains 58 elements whose radial dimen-
sion decreases geometrically with decreasing distance to the crack tip. Elements incident on
the crack tip have a side length of R/530000. Displacement increments of the 2-term elastic
field, eqn. (14), are imposed on the outer circular boundary:

Ju(r,O) =, l LK j-3 v Cos(1)(3 - 4v - cos8) + T' V r cos 6E F6 (14',

A v(r, 0) = JK i~)3- 4v - cos8) - T""~ + (l4sin

Displacements generating the full magnitude of the T-stress are applied first. Thereafter,
loading occurs by displacements corresponding to increments of applied-K until the plastic
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zone radius is 10% of R. At this point, J calculated by the domain integral technique over rings
embedded within the plastic zone differ from the applied J ( I ( 1 - v2)/E) by less than 0, 1%,
indicating that SSYconditions prevail. The deformation plasticity constitutive model ensures
that load sequence does not influence the computed results. Application of the full T-stress
first followed by Kleads to more rapid convergence of the nonlinear solution and enables verifi-
cation of the self-similarity of the stresses at all K levels.

1.5

L2 Transition Power-Law

1

0.5 - Linear

0 I.I o0 0.5 1 1.5 2 2.5 3/L

Figure 9: Uniaxial stress-strain curve defined by eqn. (10).

Load
A•

DBITQ Sp~ecimen
a 0W= 0.25 _T
H/W = 2.5 "H

1232 Nodes

Typ.

Load
Figure 10: Finite element mesh for double cantilever beam specimen.
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4.4 Models of Finite Geometries

Finite element models are constructed for each cracked geometry listed in Table 1. A semi-cir-
cular core of elements surrounds the crack tip in all models. This core consists of eight equally
sized wedges of elements in the 0 direction. Each wedge contains 30 quadrilateral elements
whose radial dimension decreases geometrically with decreasing distance to the crack tip.
Crack-tip element size ranges from 0.003% to 0.22% of the crack depth depending on the crack
depth modelled. All models exploit symmetry conditions where possible. Model size ranges
from 343 elements / 1150 nodes for the 0.5 a / W DB(T) to 1735 elements / 5482 nodes for the
0.2 a/W SE(T) and M(T). Figure 10 illustrates a typical model.

Tension geometries are loaded by either uniform tractions or by uniform displacements ap-
plied normal to the crack plane on the remote end of the specimen. Loading by applied dis-
placements maintains better control of the solution near the limit state for shallow cracks.
SE(B) specimens are loaded by distributing uniform tractions over two small elements at the
center of the compression face to eliminate the local singularity effects caused by a concen-
trated nodal load. DB(T) specimens are loaded by a uniform shear force applied normal to the
crack plane along the centerline of the pin location in a mechanical test specimen.

4.5 Post Processing to Obtain J, CTOD, J., and jl

The J-integral is computed at each load step using a domain integral method [Li, et al., 1985;
Shih, et al., 1986]. J values calculated over domains adjacent to and remote from the crack
tip are within 0.003% of each other, as expected for deformation plasticity combined with these
detailed meshes. CTOD is defined by the blunted shape of the crack flanks using the ± 450

intercept procedure. J0 is estimated by iteratively solving the following equation using a non-
linear root finder [Johnson and Riess, 1982]:

lgaYIFD] Go + 01 R + G2R2 + G3R3 + G4R 4 for 0.00085 < R < 0.1073 (15

where,
ayy I FB finite body stress at r = 2 Jp.pld/ao
R logjr,,iI/(Jo/(aor.))]

r crf 2JApplied/uO
JAppLW J applied to the finite body as computed by the domain integral

technique
Go -1.03137 03 -0.33021

G, -2.14688 G4  -0.03401
G2  -1.21929

This functional form is adopted solely for convenience, i.e. a simple closed-form fit to the T=0
MBL solution. The fit applies to a linear power law material, eqn. (10), wih a strain hardening
coefficient of 10.

The biaxiality parameterý is determined by using nodal displacements from a linear anal-
ysis of each model as input to a least-squares solution for the first twelve terms of a Wester-
gaard series expansion. Barker employed the least-squares procedure to extract the stress
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intensity factor from experimental Morie or speckle interferometry data [Barker, et al., 9•3 j.
For computation offi, nodal displacements are extracted from an annular region surrounding
(but excluding) the crack tip having an outer radius < 0.9a. ,i iý calculated by eqn. ý6i as the
normalized ratio of the first two series coefficients (K and T). Generally estimates of#l stabilize
once the number of nodal displacement conditions exceeds 40 times the number of terms in
the series,. values calculated by this technique compare favorably with those reported else-
where [Leevers and Radon, 1982, Kfouri, 1986; Sham, 1991]. Aflfl values reported in Table 1
are calculated in this manner.

5 Co 0.0
rT_ 0.0, 0.2, 0.8 -- =0.2

4 01

0-7 a

2 _T =0.0, -0.2, -0.4, -0.6, -0.8
Oro

n=10
Linear Power Law

1 2 3 4 5 6r/ (J/ao)
Figure 11: Opening mode stresses on the crack plane from modified boundary layer

analysis
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5. RESULTS AND DISCUSSION

5.1 Modified Boundary Layer Solutions

Figure 11 shows the variation of opening mode stress in the MBL solution with distance ahead
of the crack tip for different applied T-stresses. Negative T values decrease significantly the
opening mode stresses below those for T=0 while positive T values elevate slightly opening
mode stresses. Approximations for crack plane stresses in finite bodies are constructed from
these stress distributions by taking vertical cuts at different r/(J/a0 ) values to obtain a rela-
tion between elastic T-stress and opening mode stress (Figure 12). The curve fit to these re-
sults for r/(J/,or) = 2 facilitates comparison of this T-MBL approximation to finite body
stresses. Comparison at other normalized distances produces similar conclusions.

5.2 Opening Mode Stresses in Finite Bodies

Figure 13 compares opening mode stresses in various finite bodies to those predicted by the
T-MBL approximation at r/(J/ao) = 2. On these figures, the zero-load condition for all finite
body results occurs at T=O, ay /aIo=3.43 (i.e. the infinite body result). As the applied load in-
creases, the symbols representing each finite geometry depart from this initial point. Mesh
refinement limits the ability to accurately resolve near-tip stresses below a certain load, thus
some geometries have no results near this initial point. The T-MBL approximation accounts
for only those finite geometry effects contained in the second term (T) of the series expansion
for stresses near the crack tip in a linear elastic body. Under SSY this is the only geometry
effect so the T-MBL approximation is always accurate over some initial loading range. As load
increases, plastic-flow breaks to a free surface in some geometries. Un-contained yielding,
not accounted for by the T-MBL approximation, relieves stresses at the crack tip causing them
to drop below the MBL solution. On Figure 13, finite body results are plotted until the applied
deformation becomes so extensive that the stress distribution loses self-similarity writh the
reference T=O distribution. This loss of self-similarity causes ambiguity in computed Jo val-
ues, indicating that toughness values can no longer be scaled between geometries without re-
gard of the location of cleavage fracture initiation. An operational definition for the breakdown
of self-similarity is made as the deformation beyond which J0 values calculated at r/(J/o0 ) =
1.5 and at r/(J/cai) = 4 differ by more than ± 10% of their average value.

The results in Figure 13 show that the T-MBL approximation generally differs by less
than 10% from the results of a full elastic-plastic analysis of the finite body. However, in cer-
tain geometries differences between the T-MBL approximation and finite body results due to
LSY do not appear significant until near or after self-similarity breaks down. The T-MBL
approximation for these specimens is much more accurate than it is for the totality of cases
considered. Figure 14 re-groups the data presented in Figure 13 by fl value rather than by
specimen type. Three categories emerge:

1. IP8 I >0.9 T-MBL stress approximation within 1.5% of finite body results
2. Ifi >0.4 T-MBL stress approximation within 3.0% of finite body results

3. IflJ<0.4 T-MBL stress approximation within 17.5% of finite body results

Errors associated with very deep cracks (a/W>0.7) are ignored in establishing these limits.
These cases are unimportant in engineering practice. While Category 3 errors do not seem un-
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Figure 12: Variation of opening mode strt .s Qn the crack plane with applied T-stress and distance

ahead of the craclk ýip uetermined by modified boundary layer analysis

reasonably large, the efects of small stress errors become magnified when calculating Jo. It

is encouraging that "structural type" cotfigurations, i.e. shallow cracks in tension, fall mostly
in Category 1 and 2. This suggests the possibility of estimating, with acceptable accuracy, the
effective driving force for cleavage fracture, J,, based only on elastic analysis. However, "test
specimen" configurations fall mostly in Category 3 where the T-MBL approximation displays
limited accuracy. Fortunately, many detailed analyses of test specimen geometries have been
reported in ihp literature, making the availability of accurate approximate techniques le. - in-
portant.

5.3 J, Estimation

Figure 15 shows the variation of J. with J estimated by the T-MBL approximation for one

geometry in each Category established in Section 5.2. The reference curves shown on each fig-
ure are determined by elastic-plastic finite element analysis. Because J is proportional to

crack plane stresses raised to a power, the T-MBL estimates are quite accurate if stress errors
are small (I 1/ >0.9). However, the stress errors for If A <0.4 produce large errors in the pre-

dictedJo. These effects are illustrated in Figure 16. Use of T-MBL estimates of stress to calcu-
late Jo by eqn. (15) magnifies stress errors by seven to twelve fold. These results permit devel-
opment of limits that must be imposed on T-MBL .frrors in stress to keep estimates of Jo suffi-
ciently accurate. For example, stress errors must be below 1.5% to insure Jo values accurate
to within ± 10%. Only geometries having 1i 1 >0.9 satisfy this requirement. Alternatively,

stress errors below 3% (i.e. specimens with I f 1 >0.4) produce J, estimates accurate to within
± 20%. These error limits on J, are defined here only to illustrate that the T-MBL approxima-
tion is much more accurate for certain geometries (high 1# I ) than for others (low fl I). Accept-

able limits on J0 error need to take account of the relation between J, and J for the particular
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Figure 13: Comparison of modified boundary layer approximation with opening mode stresses in

various planar cracked geometries for an n= 10, ao/E=0.002 material.
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Figure 14: Comparison of modified boundary layer approximation with opening mode stresses in
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Figure 17: Postulated effect of material strain hardening on the range of biaxiality parame-
ter (8) over which T-MBL J. estimates have acceptable accuracy.

structure being assessed. As the Jo vs. J curve (Figure 15) becomes flat, small errors in Jo pro-
duce much larger errors in J and, consequently, in load at fracture. In this situation, tighter
limits on Jo error may be required.

These results suggest that a diagram of the type illustrated in Figure 17 can be
constructed. This investigation quantifies only the point for one strain hardening exponent,
n=10. The trend shown is conjectural based on information presented in earlier studies which
suggests that increased material strain hardening (i.e. n<10) reduces the sensitivity to stress
errors of the Jo values predicted using T-MBL. While further analysis is needed to quantify
the actual variation, it is encouraging that the low to moderate strength steels (yield stress
below 580 MPa, or 84 ksi) used extensively in civil and offshore construction typically have
strain hardening exponents below 10 [Barsom and Rolfe, 19871. Thus, for a broad class of engi-
neering structures, the T-MBL approximation should produce acceptably accurate estimates
of Jo for a wider range of cracked geometries than reported here for n=10.

5.4 Deformation Limits on the Applicability of these Fracture Analysis
Methodologies

The applicability limits of single parameter fracture mechanics (SPFM) are typically ex-
pressed as a maximum permissible deformation level relative to specimen size. So long as de-
formation of the structure remains below this level, the crack-tip fields in the finite body are
accurately described by J alone and critical J values are geometry independent:

D c (16

Here Jc,•i represents the value of J at some critical event (Jc for cleavage fracture initiation,
Jl, for ductile fracture initiation) and c is the smallest characteristic structural dimension
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(crack length, ligament length, or thickness). The smallest characteristic dimension c must
be large compared to the CTOD (proportional to j~r,/a 17 ) forJ alone to characterize crack-tip
deformations. Previous investigators have used different criteria to quantify Dm,. Shih and
German [19811 establish D,,, based on excessive deviation ( z 10%) of crack plane stresses in
finite bodies from the HRR solution. This criteria was established without regard to the frac-
ture mechanism, although the intent was to set limits on J1, (ductile fracture) validity. Con-
versely, Dodds, et al. [19911 establish D. for cleavage fracture as the deformation level above
which J]/Jo>.1. This criteria requires assumption of a failure mode to establish the geometry
independent conditions at fracture. While deformation limits constructed on a purely mechan-
ical basis (e.g. deviation from HRR) are more simply determined, they are of less practical util-
ity than micromechanically based limits, for these establish the maximum error in the quanti-
ty used to assess structural fracture integrity: toughness.

The evolving methodologies for fracture analysis discussed here extend significantly, rela-
tive to SPFM, the range of deformation over which the crack-tip stress state can be accurately
described. However, these techniques also have deformation limits beyond which the crack-
tip fields are not uniquely and completely characterized by the parameters used. Use of any
methodology beyond its applicability limit will produce apparent size dependencies in fracture
toughness data. Criteria which define these limits are established as follows:

a. Limit on the T-MBL Aa~roximation for J_: J, cannot be estimated accurately
using opening mode stresses from the T-MBL approximation when J!Jo calcu-
lated by the T-MBL approximation at r/(J/a,) = 2 differs by more than 10%
from JIJo determined by elastic-plastic finite element analysis of the finite ge-
ometry.

b. Limit on J_ from Elastic-Plastic Finite element Analysis: The effective driving
force for cleavage fracture, J0 , cannot be unambiguously calculated when Jo val-
ues calculated at r=l.5J/ao and at r=l.5J/ao- differ by more than 10% of their av-
erage value.

As shown in Figure 18, it appears that ý parameterizes these deformation limits, effectively
accounting for the combined effects of geometry and loading mode. While this relationship
lacks a rigorous basis, it is not completely unforeseen that 0 should account for geometry and
loading mode effects as fi depends on both. However, as f is only an elastic quantity, the effect
of material strain hardening remains unquantified.
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Figure 18: Deformation limits on the T-MBL approximation for J, (top graph) and on elastic-plas-

tic finite element calculation of J. (bottom graph) for an n=10, ao /E=0.002 material.
Symbols representing specimens of same type are connected by lines. Symbols on top
graph marked with asterisks denote deformation when T/ao=0.8. At this deformation
the T-MBL approximation has the error given in parenthesis.
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6. SUMMARY AND CONCLUSIONS

This investigation examines the ability of an elastic T-stress analysis coupled with a modified
boundary layer (MBL) solution to predict stresses ahead of a crack tip in a variety of planar
geometries. The approximate stresses are used as input to estimate the effective driving force
for cleavage fracture (J,) using the micromechanically based approached introduced by Dodds
and Anderson. Finite element analyses for a wide variety of planar cracked geometries are
conducted which have elastic biaxiality parameters () ranging from -0.99 (very low
constraint) to +2.96 (very high constraint). The magnitude and sign off indicate the rate at
which crack-tip constraint changes with increasing applied load. All results pertain to a mod-
erately strain hardening hardening material (strain hardening exponent (n) of 10). The follow-
ing specific conclusions may be drawn from these analyses:

1. The accuracy of the T-MBL approximation for opening mode stresses strongly
correlates with the elastic biaxiality parameter8 for planar geometries. The fol-
lowing limits are established by comparing T-MBL estimates to finite body cal-
culations:

Ifl 1>0.9 T-MBL stress approximation within 1% of finite body results

0.4< I1# 1<0.9 T-MBL stress approximation within 2.5% of finite body results

Ifl 1 <0.4 T-MBL stress approximation within 17.5% of finite body results

2. These errors in the estimated stress become magnified by a factor of 7 to 12 when
used to calculate the effective driving force for cleavage fracture (J,) because J
scales with stress raised to a power. However, for a restricted range of geome-
tries, reasonable accuracy is available:

Ifl1>0.9 T-MBL approximation of Jssy within 10% of finite body results

0.4< I1f<0.9 T-MBL approximation of Jo within 25% of finite body results

As "structural type" configurations, i.e. shallow cracks in tension, generally
have 1f 1 >0.4, it appears that only an elastic analysis is needed to determine
reasonably accurate Jo values for structural conditions.

3. ,6 parameterizes deformation limits on the applicability of evolving fracture
methodologies ((i.e. T-MBL, J-Q, and J/Jo), effectively accounting for the com-
bined effects of geometry and loading mode.

Available evidence suggests that increased material strain hardening (i.e. n<10) will increase
the range of cracked geometries for which the T-MBL approximation is sufficiently accurate.
The low to moderate strength steels (yield stress below 580 MPa, or 84 ksi) used extensively
in civil and offshore construction typically have strain hardening exponents below 10. Thus,
for a broad class of engineering structures, the T-MBL approximation should produce accept-
ably accurate estimates of J. for a wider range of cracked geometries than reported here for
n=10.

26



7. REFERENCES

A1-Ani, A.M., and Hancock, J.W., "J-Dominance of Short Cracks in Tension and Bending," Journal
of Mechanics and Physics of Solids, Vol. 39, pp. 23-43, 1991.

Anderson, T.L., and Dodds, R.H., "Specimen Size Requirements for Fracture Toughness Testing in the
Ductile-Brittle Transition Region," Journal of Testing and Evaluation, Vol. 19, pp. 123-134,
1991.

Barker, D.B., Sanford, R.J., and Chona, R., "Determining K and Related Stress Field Parameters from
Displacement Fields," Proceedings of the 1983 Spring Meeting of the Society for Experimental
Stress Analysis.

Barsom, J.M., and Rolfe, S.T., Fracture and Fatigue Control in Structures - Applications of Fracture
Mechanics, Prentice Hall, Inc., Englewood Cliffs, New Jersey, p. 265, 1987.

Bertegon, C., and Hancock, J.W., "Two-Parameter Characterization of Elastic-Plastic Crack Tip
Fields," Journal of Applied Mechanics, Vol. 58, pp. 104-113, March 1991.

Dodds, R.H., and Lopez, L.A., "Software Virtual Machines for Development of Finite-Element Sys-
tems," International Journal for Engineering with Computers, Vol. 13, pp. 18-26, 1985.

Dodds, R.H., Anderson, T.L., and Kirk, M.T., "A Framework to Correlate a / W Ratio Effects on Elastic-
Plastic Fracture Toughness (JQ)," International Journal of Fracture, Vol. 48, pp. 1-22, 1991.

Du, Z.Z., and Hancock, J.W., 'The Effect of Non-Singular Stresses on Crack Tip Constraint," Journal
of the Mechanics and Physics of Solids, VJ. 39, pp. 555-567, 1991.

Herrens, J., and Read, D.T., "Fracture Behavior of a Pressure Vessel Steel in the Ductile-to-Brittle
Transition Region," NISTIR 88-3099, National Institute for Standards and Technology, Boulder,
Colorado, December, 1988.

Hutchinson, J.W., "Singular Behavior at the End of a Tensile Crack in a Hardening Material," Journal
of Mechanics and Physics of Solids, Vol. 16, pp. 13-31, 1968.

Johnson, L.W., and Riess, R.D.,NumericalAnalysis, Addison-Wesley Publishing Co., Reading, Massa-
chusetts, p.145, 1982.

Keeney-Walker, J., Bass, B.R., and Landes, J.D., "An Investigation of Crack Tip Stress-Field Criteria
for Predicting Cleavage Crack Initiation," to appear in ASTM STP 1131, 1992.

Kfouri, A.P., "Some Evaluations of the Elastic T-term using Eshelby's Method," International Journal
of Fracture, Vol. 30, pp. 301-315, 1986.

Kirk, M.T., and Dodds, R.H., "An Analytical and Experimental Comparison of J, Values for Shallow
Through and Part Through Surface Cracks," Engineering Fracture Mechanics, Vol. 39, No. 3, pp.
535-551, 1991.

Kirk, M.T., and Dodds, R.H., "The Influence of Weld Strength Mismatch on Crack-Tip Constraint in
Single Edge Notch Bend Specimens," submitted for publication in the International Journal of
Fracture, 1992.

Larsson, S.G., and Carlsson, A.J., "Influence of Non-Singular Stress Terms and Specimen Geometry
on Small-Scale Yielding at Crack Tips in Elastic-Plastic Materials," Journal of the Mechanics
and Physics of Solids, Vol. 21, pp. 263-277, 1973.

Leevers, P.C. and Radon, J.C., "Inherent Stress Biaxiality in Various Specimen Geometries," Interna.
tional Journal of Fracture, Vol. 19, pp. 311-325, 1982.

Li, F.Z., Shih, C.F., and Needleman, A., "A Comparison of Methods for Calculating Energy Release
Rates," Engineering Fracture Mechanics, Vol. 21, pp. 405-421, 1985.

McMeeking, R.M., "Finite Deformation Analysis of Crack-Tip Opening in Elastic-Plastic Materials
and Implications for Fracture," Journal of the Mechanics and Physics of Solids, Vol. 25, pp.
357-381, 1977.

Miglin, M.T., Wade, C.S., and Van Der Sluys, W.A., "Analysis of Fracture Toughness Data for Modified
SA508 C12 in the Ductile-to-Brittle Transition Region,"Fracture Mechanics: Twenty-First Sym-
posium, ASTM STP 1074, J.P. Gudas, J.A. Joyce, and E.M. Hackett, Eds., American Society for
Testing and Materials, Philadelphia, Pennsylvania, pp. 238-263, 1990.

27



Moran, B., and Shih, C.F., "Crack Tip and Associated Domain Integrals from Momentum and Energy
Balance," Engineering Fracture Mechanics, Vol. 27, pp. 615-642, 1987.

Nakamura, T., and Parks, D., "Determination of Elastic T-Stress Along 3-D Crack Fronts Using an
Elastic Interaction Integral," submitted for publication.

O'Dowd, N.P., and Shih, C.F., "Family of Crack-Tip Fields Characterized by a Triaxiality Parameter:
Part I - Structure of Fields," Journal of the Mechanics and Physics of Solids, Vol. 39., No. 8, pp.
989-1015, 1991.

O'Dowd, N.P., and Shib, C.F., "Family of Crack-Tip Fields Characterized by a Triaxiality Parameter:
Part II - Fracture Applications," Journal of the Mechanics and Physics of Solids, Vol. 40, pp.
939-963, 1992.

Parks, D.M., "Engineering Methodologies for Assessing Crack Front Constraint," Presented at the
1991 Spring Meeting of the Society for Experimental Mechanics, 1991.

Rice, J.R., and Rosengren, G.F., "Plane Strain Deformation Near a Crack Tip in a Power-Law Harden-
ing Material," Journal of Mechanics and Physics of Solids, Vol. 16, pp. 1-12, 1968.

Rice, J.R., and Tracey, D.M., in Numerical and Computer Methods in Structural Mechanics, S.J.
Fenves et al. (eds.), Academic Press, New York, pp.585-623, 1968.

Ritchie, R.O., Knott, J.F., and Rice, J.R., "On the Relationship Between Critical Tensile Stress and
Fracture Toughness in Mild Steel," Journal of the Mechanics and Physics of Solids, Vol. 21, pp.
395-410, 1973.

Sham, T.L., "Tý1 , - ermination of the Elastic T-term using Higher Order Weight Functions," Interna-
tional Jou-,ial of Fracture, Vol. 48, pp. 81-102, 1991.

Shih, C.F. and German, M.D., "Requirements for a One Parameter Characterization of Crack Tip
Fields by the HRR Singularity," International Journal of Fracture, Vol. 17, No. 1, pp. 27-43, 1981.

Shih, C.F., Moran, B., and Nakamura, T., "Energy Release Rate Along a Three-Dimensional Crack
Front in a Thermally Stressed Body," International Journal of Fracture, Vol. 30, pp. 79-102,
1986.

Sorem, W.A., Dodds, R.H., and Rolfe, S.T., "Effects of Crack Depth on Elastic Plastic Fracture Tough-
ness," International Journal of Fracture, Vol. 47, pp. 105-126, 1991.

Sumpter, J.D.G., and Hancock, J.W., "Shallow Crack Toughness of HY-80 Welds: An Analysis Based
on T Stresses," International Journal of Pressure Vessels and Piping, Vol. 45, pp. 207-221, 1991.

Sumpter, J.D.G., and Forbes, A.T., "Constraint Based Analysis of Shallow Cracks in Mild Steel," Pro-
ceedings of the International Conference on Shallow Crack Fracture Mechanics Tests and Ap.
plications, TWI, Cambridge, England, September 1992.

Theiss, T.J., and Bryson, J.R., "Influence of Crack Depth on Fracture Toughness of Reactor Pressure
Vessel Steel," to appear in the ASTM STP resulting from the Symposium on Constraint Effects
in Fracture, held May 8-9 1991, Indianapolis, Indiana.

Wang, YY., "On the Two-Parameter Characterization of Elastic-Plastic Crack-Front Fields in Sur-
face-Cracked Plates," to appear in the ASTM STP resulting from the Symposium on Constraint
Effects in Fracture, held May 8-9 1991(a), Indianapolis, Indiana.

Wang, Y.Y., "A Two-Parameter Characterization of Elastic-Plastic Crack Tip Fields and Applications
to Cleavage Fracture, Ph.D. Dissertation, MIT, 1991(b).

28



INITIAL DISTRIBUTION

OUTSIDE CENTER

Copies

1 DDRELib
1 Brown Univ.

1 CNOIOP 098T 1 (Dr. C.F. Shih)

2 OCNR 1 Univ. of Illinois
1 1132 (Rajapakse) 1 (Dr. RH. Dodds, Jr.)
1 1132 (Vasudivan)
1 0225 1 Texas A&M Univ.
1 432S 1 (Dr. T.L. Anderson)
1Lib

2 NASA/Langley
1 NAVPGSCOL I Lib

1 (Dr. J.C. Newman)
1 USNROTCUJ

NAVADMINU MIT 1 Hibbit, Karlsson and Sorenson, Inc.

2 NRL
1 Code 6380
1 Code 6384

8 NAVSEA
1 (SEA05M)
1 (SEA05M2)
1 (SEA05P)
1 (SEA05P1)
1 (SEA05P2)
1 (SEA05P3)
2 (SEA08S)

2 DTIC

5 USNRC
1 (M. Mayfield)
2 (Dr. S.N. Malik)
I (Ak Hiser)
1 (Dr. E.M. Hackett)

1 DOE, Oak Ridge

2 NIST, Boulder
1 Lib
1 (J. Berger)

4 NIST, Washington
1 Lib
1 (R. Fields)
1 (R. DeWitt)
1 (J.T. Fong)



CENTER DISTRIBUTION

Copies

1 0115
1 17
1 1702
1 1703
1 172
2 172.4
1 173
2 173.3
1 174.3
1 175
1 175.1
1 28
1 2801
5 281
1 2812
1 2813

12 2814
5 2814 (R. Link)
1 2815
1 3421
1 3422

NAVSSES
1 043
1 043.1
1 043C
1 045
1 045B



Fina

4 TiTE AND SB Ti ",

APPROXIMATE TECHNIQUES FOR PREDICTING SIZE EFFECTS
ON CLEAVAGE FRACTURE TOUGHNESS (Jc) C: N61533-92-R-0030

6 AUTHOR(S)

WU: 93-1-2814-554

MARK T. KIRK AND ROBERT H. DODDS, JR.

7. PERFORMING ORGANIZATION NAMEtSl AND ADORESS•E•) E. P.E OF,!fqNC ORGANYZA1ION

NAVAL SURFACE WARFARE CENTER REPORT NUMBER

CARDEROCK DIVISION
ANNAPOLIS, DETACHMENT CDNSWC/SME-1 8-92
ANNAPOLIS, MD 21402

. SPONSORIN5 MC'N!TORIN, AGENCv N;A%.-,S, AN:. . : ', ' t.C.%

AGENCY F-PO,3 ?.•'EB

US NUCLEAR REGULATORY COMMISSION
MATERIALS ENGINEERING BRANCH
NL/S 217C NUJREG/CR-5970
WASHINGTON, DC 20555

2, SiC, -1 - .T

Approved for Public Release: distribution is unlimited

This investigation examines the ability of an elastic T-stress coupled with a modi-
fied boundary layer (MBL) solution to predit stresses ahead of a crack tip in a var-
iety of planar geometries. The approximate stresses are used as input tc estimate
the effective driving force for cleavage fracture (Jo) using the micromechanically
based approached introduced by Dodds and Anderson. Finite element analyses for a
wide variety of planar cracked geometries are conducted which have elastic biaxia-
lity parameters (B) ranging from -0.99 (very low constraint) to +2.96 (very high
constraint). The magnitude and sign of B indicate the rate at which craek-tip'-
constraint changes with increasing applied load. All results pertain to a moderatel
strain hardening material (strain hardening exponent(n) of 10). These analyses
suggest that B is an effective indicator of both the accuracy of T-MBL estimates of
Jo and of applicability limits on evolving fracture analysis methodologies (i.e.
T-MBL, J-Q, and J/Jo).

[S2. EcT TCi .,S KEYWORDS: Elastic-plastic fracture mechanics, size 15 NUNPBER OF P4GES

effects, finite element analysis modified boundary layer, 1
T-stress, JssYJo, Q, structural integrity assessment. 16 PRCE CODE

17. $ECurITY CLAS&IHCATION 1 SECURiTY CLASSiF• ZT•T; 19. SEZJR1 "._ - -20 -ESRACT

OF REPORT OF THIS FAGE OF ABS^TRMC O

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
LS' r-P ?' ;RP- . P9


